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FOREWORD

NASA experience has indicated a need for uniform criteria for the design of space

vehicles. Accordingly, criteria are being developed in the following areas of technology:

Environment

Structures

Guidance and Control

Chemical Propulsion.

Individual components of this work will be issued as separate monographs as soon as

they are completed. A list of all previously issued monographs in this series can be

found on the last page of this document.

These monographs are to be regarded as guides to design and not as NASA

requirements, except as may be specified in formal project specifications. It is

expected, however, that the criteria sections of these documents, revised as experience

may indicate to be desirable, eventually will become uniform design requirements for

NASA space vehicles.

This monograph was prepared under the cognizance of Langley Research Center. The

Task Manager was G. W. Jones, Jr. The author was J. S. Archer of TRW Systems. A

number of other individuals assisted in development and review. In particular, the

significant contributions of the following are acknowledged: V.L. Alley, Jr., and

J.S. Mixson of NASA Langley Research Center; R. Chen, D.L. Keeton, and

C.H. Perisho of McDonnell Douglas Corporation; W.H. Gayman of Jet Propulsion

Laboratory, California Institute of Technology; T.J. Harvey and R.J. Herzberg of

Lockheed Missiles & Space Company; F.C. Hung of North American Rockwell

Corporation; W. C. Hurty of the University of California, Los Angeles; G. Morosow of

Martin Marietta Corporation; C.D. Pengelley of General Dynamics Corporation;

C.P. Rubin of Hughes Aircraft Company; and M.J. Turner of The Boeing Company.

Comments concerning the technical content of these monographs will be welcomed by

the National Aeronautics and Space Administration, Office of Advanced Research and

Technology (Code RVA), Washington, D. C. 20546.
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NATURAL VIBRATION
MODAL ANALYSIS

1. INTRODUCTION

Natural vibration modal data describe the linear dynamic characteristics of the space

vehicle structure. A natural mode of vibration occurs when each point in the structure

executes harmonic motion about a point of static equilibrium, every point passing

through its equilibrium position at the same instant and reaching its maximum

displacement at the same instant. The nature of the displacement (deflection, rotation,

and slope) is generally known as the natural mode shape, and the frequency of the

harmonic motion is generally known as the natural mode frequency. In addition to the

natural (normal) vibration-mode shapes and frequencies, these data include the modal

(generalized, integrated) mass, the internal loads associated with the natural vibration

modes and frequencies, and the structural damping associated with the modes.

Knowledge of these data is basic to an understanding of the dynamic transient

accelerations, velocities, and displacements of the vehicle under any kind of excitation.

This knowledge is required for stability analyses made in control-system design. It is

essential in dynamic-response analyses where the structural modes are used in the

determination of loads on the structure. It is also essential in planning and

implementing a meaningful program of inflight-loads determination. For spin-stabilized

space vehicles, knowledge of modal data is essential in designing to preclude critical

whirl conditions.

Provision of accurate data has made it possible to correct conditions that caused several

major vehicle failures and near-failures. Some of these are listed below:

Control-system coupling with a launch-vehicle structure in the launch mode

required engine shutdown and system redesign to prevent failure associated
with excitation of the cantilevered mode of the launch stand.

Launch-vehicle roll-control jets were overpowered by a runaway roll

instability which was associated with a rotary sloshing vibration mode.

Torsion oscillation during staging of a major launch vehicle required close

attention to payload torsional vibration to minimize torsion loads and

accelerations on the spacecraft structure.



Theminimum-frequencyspecificationfor anewspacecraftwasnot satisfied
due to inadequatemodal vibration analysis;the result was a costly
modificationof design.

A spacecraftin orbit experiencedcontinuing low-frequencyvibration
oscillationsthat interferedwith onboardexperimentsdueto couplingwith
the control systemandorbitalenvironmenteffects.Thisproblemhaseluded
resolution becauseof inadequateknowledgeof the system'svibration
characteristics.

SeverallaunchvehicleshaveexperiencedPOGO-typelongitudinaloscillation
phenomenawhichresultfrom unstablecouplingof propulsionfeedsystems
with longitudinalstructure-vibrationmodes.

Failure of primary structure in spacevehicleshasoccurredfrom fatigue
causedby repeatedvibration testing. With adequateknowledgeof the
primary structure resonances,the maximumstructural responsescan be
limitedandthefatiguedamagecausedby testingcanthusbereduced.

Catastrophicfailure of a launchvehicleoccurredbecausethe spinratewas
coincidentto the fundamentalflexuralnaturalfrequency,resultingin spin
resonance.

• Prematureexhaustionof control fuel has resulted from structural-mode

feedback to the autopilot system, causing periodic pulsing of controls.

This monograph is concerned with the determination and evaluation of natural

vibration modal data for space vehicle structure. The monograph presents analytical

and experimental methods for obtaining these data and judging their accuracy, and

provides means of demonstrating the validity of the data.

Three groups of physical parameters have a dominant effect on the character of the

natural vibration modal data:

1. The magnitude and distribution of the masses and inertias in the structure.

2. The load-deflection properties of the structure.

3. The boundary conditions of the structure.

Each of these parameters may vary considerably during the operational life of the

vehicle. The definition of the boundary conditions is complicated by the "contractual

interface" problem associated with space-vehicle procurement practices. The problem

is how to determine valid modal data of complete space vehicles when separate stages

of the vehicle are under development by different industrial contractors, and

contractor direction is administered by different organizational segments of NASA.



Thebasicapproachto determiningnaturalvibrationmodaldataof vehiclestructureis
to rely on theoreticaldataverifiedby experimentalmethods.An importantpartof the
analysisis the derivationof the conceptual(analyticalor mathematical)modelof the
real structureandformulationof the equationsof motion representingthisstructure.
The methodsby which the equationsare solvedare well established.Significant
load-displacementdataandboundaryconditionsof theanalyticalmodelareverifiedby
static testson engineering-developmentstructure,and by modal testson prototype
structure.Modal testingpermitsevaluationof the validity of modesderivedfrom
analysis,andin somecasesextendstheanalyticalresults.Also,modaltestingremains
theonly knownwayto establishmodaldampingfactors.

This monographis relatedto otherplannedmonographsin this serieswhichtreatthe
inputs to and responsesof vehiclestructureas it encountersvariousnatural and
inducedenvironments.Theserelatedmonographsrequiretheuseof analyseswhichcan
for determinationof naturalvibrationmodaldataasoneof the stepsin dealingwith
their specificproblemareas.For example,plannedmonographson structuralvibration,
shock,anddynamicinstabilitiessuchasPOGOrequirea determinationof modaldata
asa stepin the responseanalysesthat determinetheseverityof loadson spacevehicle
structurecausedbytheseenvironments.

2. STATE OF THE ART

A vast amount of material has been published on methods of calculating theoretical

natural-vibration modes for dynamic systems of varying degrees of complexity (e.g.,

refs. 1 to 5). The literature also provides modal data for common mechanical systems

(refs. 6 and 7). However, exact solutions for modal-data problems in complex

structures are beyond the state of the art. In practice, simplifications are introduced to

allow solution of the problem with available methods.

Space-vehicle modal analysis is generally confirmed by test. Sometimes the natural

frequencies and perhaps the first or second mode shape of a spacecraft can be

conveniently established utilizing the test setup for the qualification sine-sweep testing.

The experimental determination of more precise modal data for launch vehicles or

highly flexible spacecraft, however, requires a specially designed test program and

equipment. Techniques for the experimental evaluation of modal parameters are well

documented. References 8 to 11 are examples of the literature available on both

ground-test and flight-test techniques. The application of multiple shakers for

determining modal parameters was formulated by Beckley in 1946 and was developed

for use on aircraft by Lewis and Wrisley (ref. 12) in 1950. More recent application of

multiple-shaker testing to space vehicle structures is given in references 13 and 14.



2.1 Analytical Determination of Modal Data

Methods of analytical determination of modal parameters are most readily examined in

terms of the various phases of the analysis. The major steps in the analysis are the

following:

• Modeling of structure.

• Formulation of equations of motion.

• Solution for modal data.

The derivation of the mathematical model of the structure and the associated choice of

coordinate system are linked with the formulation of the equations of motion. In all

practical cases, at least parts of the structure have distributed masses, and so the

number of degrees of freedom required to represent exactly its dynamic motion is

infinite. The reduction of the real structure to systems of finite degrees of freedom

represents one of the basic simplifications in the modeling process. This can be done by

such techniques as lumping of the masses (springs), by application of finite-element

techniques, or by a Ritz (Galerkin) approach. The application of these techniques

results finally in the equations of motion which reduce to a matrix eigenvalue problem

by removal of the time factor.

The methods by which these equations are solved are independent of the derivation of

the mathematical model and the formulation of the equations of motion.

2.1.1 Modeling of Structure

The mathematical model is the prime factor in obtaining satisfactory modal definition

for the structure. If the model is of poor quality, mathematical rigor in the solution of

the equations of motion will not improve results. The following basic factors are given

careful consideration in the synthesis of the mathematical model:

• Stiffness distribution.

• Mass distribution.

• Boundary conditions.

Neglect of any of these considerations may result in a model that is not dynamically
similar to the actual structure.



2.1.1.1 Stiffness Distribution

The definition of the stiffness distribution is the most difficult task in the synthesis of

a mathematical structural dynamic model. For structures having continuously

distributed properties (beams, plates, simple shells, and similar elements), a model

exhibiting those same properties may be utilized (ref. 2). Models of this type are used

with displacement functions to obtain modal parameters.

Most structures are complex and contain discontinuities in stiffness. For these

structures, mathematical models are used which are composed of independently

modeled structural components (finite elements) joined at coordinate points through

common displacement and force components. These are defined as finite-element

models. Finite-element models are available for beams (ref. 15), flat-plate elements

(refs. 16 to 21), curved-plate elements (refs. 22 to 24), and sandwich-plate elements

(ref. 21). These elements are used in conjunction with displacement and force

coordinates which define the geometry of the elements. The finite-element model

generally results in the definition of a stiffness or flexibility matrix for the discretized

system (ref. 2).

The finite-element technique is the most generally applicable of the available analytical

methods. It is readily adapted to digital-computer solution and takes maximum

advantage of matrix notation in mathematical manipulations to obtain solutions. This

technique is being rapidly improved and has been adopted in all major computer

programs for general structural analysis. The basic problem of computer storage

limitations is a dominant consideration in development and utilization of such

programs. Modal data can be obtained for almost any configuration, using the

finite-element technique.

Additional factors that affect the stiffness parameters of the structure include pressure

in shells (refs. 23, 25, and 26), axial loads that approach the critical level (refs. 15

and 23), and temperature effects on material properties. The effect of typical

airframe-type joints on modal-parameter computation is discussed in reference 9.

In the analysis of systems with many component structures and often inherently large

differences in stiffness parameters, the modal parameters of component structures are

used to synthesize the overall structural characteristics (ref. 27). Some advantages of

using this technique are that it solves lower-order eigenvalue problems, generates the

stiffness and mass parameters for smaller substructures, minimizes numerical

difficulties due to the ill-conditioning of the stiffness matrix, resolves contractual

interface problems, and conserves computer storage.



2.1.1.2 Mass Distribution

Mass distribution depends on the physical system under consideration and the method

of analysis. For a system with a uniform or piecewise uniform mass distribution (i.e.,

beams, rods, plates, and panels), commonly handled by an analysis based on

continuous-system equations, the mass distribution is readily defined by the actual

structural distribution.

Several methods are used to define the mass distribution. These include the

lumped-mass method, the consistent-mass method, and a number of approaches that

use various velocity-interpolation functions to define a mass matrix (ref. 1).

The lumped-mass method distributes the element masses in concentrations located at

the coordinate points in a physically reasonable manner which maintains the center of

mass of the structure (refs. 1 and 28 to 30). This method of distribution is well suited

for the analysis of structures with preponderantly concentrated masses. Local rotary

masses are frequently used with this method to represent the effect of significant

transverse-mass distributions. The disadvantage of the method is the relatively large

number of coordinate points required for accurate analysis of systems with

preponderantly distributed masses.

The consistent-mass technique represents the mass in a manner consistent with the

actual distribution of mass in the structure (refs. 15, 16, 22, 23, 31, and 32). Although

only recently codified, this technique is being widely adopted and incorporated in

modem analytical computer programs. The consistent-mass-distribution technique has

been shown to yield more accurate results than the concentrated-mass technique for

systems where the mass is largely distributed in the structure (refs. 28 and 31). Its

disadvantage is the nondiagonal mass matrix, which tends to in crease the complexity of

the analysis.

The treatment of the nonstructural mass of liquids in a fuel tank requires special

consideration, since this item may be more significant than any other in contributing

to uncertainties in the calculation of the lower modes for liquid-propelled boosters.

The mechanical coupling of the fluid mass with the structure is generally accomplished

through an equivalent pendulum analogy that simulates the free-surface lateral sloshing

effect (ref. 33). Longitudinal mechanical coupling is accomplished through an

equivalent spring for the tank-end bulkhead which supports the fluid (ref. 25). More

complex longitudinal coupling may be accomplished with finite-element models that

couple the changes in the cross-sectional area of the tank and deflection of the bottom

bulkhead with motion of the fluid center of gravity (ref. 23).



2.1.1.3 Boundary Conditions

Because natural modes of a structure are sensitive to boundary conditions (ref. 34), the

same boundary conditions are imposed on the model as on the actual structure, insofar

as feasible. Frequently, static tests must be performed to determine the influence

coefficients defining the boundary conditions at an interstage connection with the

supporting stage structure. Experimental influence-coefficient data are readily obtained

by static test when necessary. In some cases of large full-scale structures, these data are

approximated by use of replica models.

2.1.2 Formulation of Equations of Motion

The methods of formulating the equations of motion (refs. 1 and 2) can be classified

under the following categories:

• Integral equation methods.

• Differential equation methods.

• Energy methods.

Each method may include either the theoretically exact or approximate approach and

can be used to handle both the distributed and discrete structural models. In all but a

few special cases, however, the mathematically exact solution to the equations of

motion cannot be found and the analyst must resort to numerical techniques.

2.1.2.1 Integral Equation Methods

Integral equation methods of formulating the equations of motion make use of an

influence-coefficient function that defines the displacement of any point of a

supported structure in terms of the applied load. The displacement under the inertial

loads is obtained through integral equations which become the equations of motion.

The advantage of this method is that it includes the boundary conditions in the basic

equation of motion. The derivation of the influence function, however, is achievable

for simple structures' only. Approximate formulations can be made by techniques such

as the Galerkin method described in references 1 and 2.

2.1.2.2 Differential Equation Methods

The natural modes and frequencies of a structure can be determined through

differential equations which relate the structure's distortions to the inertial forces on
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the structure. This is a classical approach, and modal data obtained by this approach

are available in the literature for a large variety of simple configurations. However, it is

difficult to apply this method to a complex structure.

Approximate methods of formulating these differential equations for the nonuniform

beam were proposed and developed by Myklestad (ref. 35), Thomson (ref. 36), and

Holzer (refs. 1 and 37). These methods utilize a series of connected uniform beams

that approximate the stiffness distribution of the nonuniform beam. Discrete masses

may be located at the intersection of the uniform beam elements, but not necessarily

at every intersection. A frequency-dependent relationship between the boundary

conditions at the two ends of the beam results from the basic analysis. This

relationship identically satisfies the boundary conditions only for the natural

frequencies of the system. The addition of secondary relationships of shear

deformation and rotary inertia results in a set of differential equations known as the

Timoshenko beam theory. A practical method of treating the Timoshenko beam

equations applicable to space-vehicle vibrations is given in reference 38.

The use of equations of motion of component members to define the total structural

dynamic characteristics has been generalized in the transfer-matrix method. The

formulation of transfer matrices and their application to a wide variety of structural

problems is detailed in reference 39. Transfer-matrix techniques extend the usefulness

of the approximate differential equation method to such structures as frames and

built-up shells. The transfer-matrix technique can be applied to any type of linear

structure for which the elemental transfer matrices can be derived. The effects of shear

deformation and rotary inertia are easily included.

2.1.2.3 Energy Methods

Energy methods for formulation of the equations of motion are based on energy

principles of mechanics, such as conservation of energy, virtual work, Lagrange's

equation, and Hamilton's principle (ref. 40). In this approach, displacement functions

that approximate the mode shape are used to represent the structure behavior. While

the chosen functions are not theoretically restricted to those satisfying the geometric

boundary conditions for the mode shapes, the accuracy of the solution depends

strongly on how well the geometric boundary conditions are satisfied. The advantage

of energy methods lies in their versatility; they can be applied to any structural

configuration and can approximate the structural behavior to any desired degree of

precision.

Rayleigh's energy method (ref. 41) provides a technique for determining the first mode

of simple structures when a reasonable estimate of the mode shape can be made. Ritz

8
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(refs.1 and42) extendedthe Rayleigh method to allow for the calculation of higher

modes. This method uses a set of functions, combined to provide a eloser

approximation of the natural mode shape. If the functions are properly chosen,

accurate natural-frequency approximations are obtained, as well as definition of

higher-order mode data. A disadvantage is that the accuracy of the modal data

obtained by the Rayleigh-Ritz procedure (ref. 1) depends on the validity of the

assumed mode shapes. However, modern techniques,by which the system modes are

synthesized from easily derived shapes for the elements or components of the system

through imposition of continuity conditions, render this problem easily tractable by

means of almost automatic procedures, These procedures are involved in the

displacement method of analysis using finite elements, or in the method of

component-mode synthesis. Thus, the Rayleigh-Ritz method can make use of such

synthetic assumed modes to overcome its disadvantage.

2.1.3 Solution for Modal Data

The equations of motion can be solved to obtain the modal data by several methods.

Hand solution is usually limited to small-order systems because of the overwhelming

amount of numerical labor involved. The solution of large-order systems is generally

readily achieved on electronic computers.

Exact solutions are available for linear differential equations with constant coefficients,

such as equations used to characterize systems with both uniform mass and stiffness

properties. Where these properties are not uniformly distributed, exact solutions are

not always possible and approximate solutions are obtained. The solutions to the basic

differential equation of motion are detailed in the literature for various boundary

conditions (refs. 3, 7, and 43). Both mode shapes and natural frequencies are readily

available for the single-span uniform beam.

The two methods generally used to obtain the natural vibration mode shapes and

frequencies are expansion of the characteristic determinant and matrix iteration.

Reference 44 describes a step-by-step procedure for expansion and solution of the

characteristic determinant. A detailed description of the matrix-iteration procedure can

be found in references 1, 45, and 46. Several other techniques, such as the Jacobi and

Householder methods, are described in references 47 and 48. The Jacobi method

readily provides data for any mode of the system, whereas the Householder method is

most efficient for providing data for only the lower-frequency modes. The modal mass

and the normalized internal loads consistent with the natural vibration modes and

frequencies are readily obtained, once the mode shapes and frequencies are determined

(ref. 2). Modal damping is an exception in that it must be determined primarily by



previousexperienceand/orby experiment(refs. 1,3, 12,and49). Knowledgeof the
distributionof dampingthroughoutastructureisnot generallydeterministic.However,
the assumptionthat thedampingdistributionisproportionalto eitherthemassmatrix
or the stiffnessmatrix (or both) is frequentlymadefor theexpediencyof uncoupling
the equationsof motionfor linearlydampedsystems(ref. 2). Whensuchadistributior_
ismade,it isdefinedasproportionaldamping.

A numericalproblemencounteredin the solutionof naturalmodeproblemsby digital
computeris the lossof significantdigits,which is relatedto the sizeandnumerical
ill-conditioningof the matrix equations(ref. 50).A majorsourceof ill-conditioningis
extremevariation in stiffnessor flexibility of adjacentindividualcomponentsin the
structuralmatrix. For example,in finite elementsthe axialand"inplane" stiffnesses
areusuallymany ordersof magnitudegreaterthan transversestiffnesses.Suitable
coordinatechoicescan generallybe appliedto isolatethe effectsof thesewidely
separatedstiffnessesandto improvematrix conditioning.Partof theproblemrelating
to the limiting caseof infinite axialstiffnesswith consequentkinematicredundancies
amongthemodalcoordinatesis discussedin reference2.

2.1.4 Accuracy of Analytical Modal Data

It should be noted that the accuracy requirements for modal data depend upon the

problem to be solved. For example, data that may be adequate for control-systems

analysis may be inadequate for detailed loads analysis. Furthermore, no single type of

analytical model representation can adequately describe all configurations of a space

vehicle. The common-beam analogy that may be fully adequate to represent a given

booster and spacecraft configuration for analyses during launch is probably inadequate

for representing the complex structure of the spacecraft alone during other phases of

flight.

The accuracy of modal data obtainable by analysis decreases as the structure of the

vehicle becomes more complex, and also decreases with increase in the number of the

modes for which data are desired. For example, an accuracy of 1% on the fundamental

frequency of a simple space vehicle is probably readily attainable, whereas 5% on the

fundamental frequency of a complex vehicle having multiple branched beams with

redundant interconnections might be unreasonable. Similarly, 10% on the frequency of

the fourth or fifth mode of the simple vehicle would be well within the state of the art,

but 10% on the frequency of the fourth or fifth mode of the complex structure would

probably be unfeasible.

10
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2.2 Experimental Determination of Modal Data

The only positive method of evaluating analytically determined modal parameters is by

test. The parameters of interest are:

• Modal frequencies.

• Modal displacements.

• Modal mass.

• Modal damping ratios.

Modal parameters can be determined by experiment in several ways, the most

convenient of which is to excite the structure with one or more shakers located near

the predicted antinodes. The function of the shaker in modal testing is to provide, as

nearly as possible, a force distribution which opposes the distributed damping forces in

the vibrating structural system.

The determination of modal data with several shakers is well documented.

Reference 12 describes the use of 24shakers in tests of aircraft structures;

reference 51, the use of 10 shakers to determine the first four lateral bending modes of

a full-scale Minuteman missile; and reference 52 describes the use of two shakers to

determine the first three lateral bending modes of a third-stage Minuteman motor.

Bisplinghoff (ref. 2) discusses the use of shakers that are shifted during each modal

search to provide optimum development of a mode.

A good understanding of the structure and of the test techniques is required to locate

shakers over the structure and "tune in" modes by adjusting the frequency and force

amplitude. The equipment required for modal testing varies with the size and

complexity of the space vehicle, and with the boundary conditions to be imposed.

Experimentally obtained modes are generally required for the fixed-base condition and

for the free-free condition.

As noted in references 12, 34, 51, and 52, careful attention is given to the simulation

of boundary conditions. Valid results are obtained from tests only when the

test boundary conditions simulate the actual service conditions. As an example, the

free-free modes of a structure can be obtained experimentally with the structure

mounted in a soft suspension. The damping inherent in the suspension and the

suspension effect on frequency and mode shape must be taken into account in

computing the modal data from the test results.

11



Modeshapes,frequencies,anddampingareobtaineddirectly from experimentaldata.
Modal mass is derived from experimentally obtained modal frequency and
displacementdata,utilizingknownmassdistributionthroughoutthestructure.

The most commonmethodfor obtainingmodaldampingconsistsof interruptingthe
vibration forcessimultaneouslyandmeasuringtheresultinglogarithmicdecrementin
the variousresponsesignals(ref. 1). Other methodsarebasedon measurementsof
resonantresponsebandwidth(ref. 1). Stahle(ref. 49) developeda method whereby
responsesignalsareseparatedinto real andimaginarycomponentswith referenceto
the input; dampingis then determinedasa function of the resonantpeaksfrom the
realor inphaseresponseplots.LewisandWrisley(ref. 12)deviseda methodwhereby
modaldampingisdeterminedfrom measurementsof the input forceat resonance.

Eventhoughefficienttestequipmentandtesttechniquesareused,theidentificationof
modesmaystill beaproblem.Wherethemodesarewidelyseparated,simpleamplitude
and phasestudiesof responsetime historieswill identify eachmode.The natural
frequency at which the responseswere recorded is first determined from
decay-responseplotsobtainedduringinterruptionsof the excitingforces.An absence
of beatsbetweenthe modaland forcing frequenciesindicatescoincidenceof these
frequencies(ref. 52),Wheremodesareclosetogetherin the frequencyregime,modal
identification is difficult. Heavyrelianceis usuallyplacedon the ability to movethe
shakersto locationswhich will provideoptimum developmentof the mode.Stahle
(ref. 49) showedthat the imaginaryor quadratureresponses(with respectto theinput
function) peak more rapidly than total response.This providesa more direct
identificationof modalfrequencyandresponsemagnitudethancan be obtained from a

total response plot. The natural frequency could also be checked against the real or

inphase component plot. Several manufacturers have developed electronic devices

which convert response signals into inphase and quadrature components (relative to an

input signal).

To avoid phase errors from multiple instrumentation channels, a signal conditioner,

recording channel, and two transducers are sometimes used in "probing" the structure

to establish mode shape. One transducer is fixed at a point of large modal amplitude to

give a phase reference for determination of the algebraic sign to be assigned to the

other transducer, which is used to measure the response at a number of locations along

the structure.

After the natural frequency of the mode has been established, successive runs are made

at resonance with the transducer attached to the specimen at a different location for

each run. Any differences in phase from location to location are then attributable to

causes other than the instrumentation system. The mode-amplitude survey data are

12



madeat sufficientpoints to providedisplacementdataat locationsof all significant

concentrated and distributed masses in the structure. These comprehensive

modal-displacement data are required for calculation of modal masses for the

generalized mass matrix and for modal checks•

A final step in the modal test program is evaluation of the consistency of the

experimental data by examination of the orthogonality of the modal data*. The

relative orthogonality of the modal data is generally determined as each successive

mode is obtained. This is accomplished by utilizing the experimentally determined

mode shapes and the distributed mass of the system to compute the generalized mass

matrix. Each of the individual mass-matrix coefficients is obtained from an integrated

or summed double product of two experimental mode shapes and the known mass of

the system.

Ideally, the nondiagonal elements in the mass matrix should be zero, but this is seldom

the case. Procedures such as the one discussed in reference 53 are utilized to make

small adjustments in mode shape.

The determination of experimental frequencies, mode shapes, modal mass, and modal

damping is generally difficult to accomplish in a reliable and repeatable manner• In

many ways, vibration testing is more of an art than a science. The dependence of the

desired data on the amplitude of the excitation; the existence in the structure of such

nonlinear effects as hysteresis, dead zones, joints, and friction; and the difficulties

associated with accurate measurement of the desired phenomena all contribute to a

healthy suspicion of the accuracy of experimental data unless they have been obtained

under carefully controlled conditions.

3. CRITERIA

3.1 General

Natural vibration modal data used in the design of a space vehicle shall be determined

in sufficient quantity and with sufficient accuracy to support adequately any aspect of

vehicle design or operation for which the modal data are necessary.

*The concept of orthogonality for the mode shapes of a beam (neglecting rotary inertia) is mathematically defined

(ref. 1) as

o Wi(Y)Wj (y)m(y)dy = 0 for i _ j

where Wi(Y) and Wi(Y ) are any two mode shapes of a beam of length £ with deflection W(y) and mass-per-unit

length m(y) provide_l as functions of position y It is said that the functions Wi(Y) and W.(y) are orthogonal to each• j
other with respect to the weighting function m(y).
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3.2 Guides for Compliance

3.2.1 Data Required

A determination shall be made of the type, amount, and required accuracy of the

natural vibration modal data needed to support the various aspects of vehicle design or

operation.

3.2.2 Analysis

Modal analyses shall be performed to provide the required data. In that part of each

modal analysis where the mathematical model of the structure is synthesized, the

stiffness distribution, mass distribution, and boundary conditions for the structure

shall be represented so as to ensure a model which is dynamically similar to the actual

structure. The complexity of the mathematical model shall depend upon the modal

data needed for the particular problems to be investigated. The equations of motion

(which incorporate the mathematical model) shall be formulated by methods suited for

the particular problems considered. The modal data shall be obtained by solving the

free vibration equations of motion. It shall be demonstrated that the computed modal

data satisfy the previously determined requirements of type, amount, and accuracy.

3.2.3 Tests

The major or significant analytical load-displacement characteristics of the vehicle

structure, where not otherwise established, shall be verified by static tests.

If modal data obtained by analysis cannot otherwise be demonstrated to be adequate,

the analytical data shall be replaced or confirmed by the results of ground or inflight

dynamic tests on a realistic structure, on a dynamically scaled replica model, or on

both.

4. RECOMMENDED PRACTICES

Natural vibration modal data should be determined as early as possible in the

vehicle-design procedure.

The following tasks should be accomplished to obtain natural vibration modal data:

.e Determine the type, amount, and required accuracy of modal data needed to

support the desired analyses.

14



Construct mathematicalmodel (or models)which representsthe vehicle
structure.

Establishproperboundaryconditionsfor thevariousoperationsphases,such
asprelaunchtransportationand testing,launchand exit, stageseparation,
docking, freespaceflight, entry, andtouchdown;then formulateandsolve
theequationsof motionto obtainthenaturalvibrationmodaldata.

Conducttestson vehiclestructuresto verify the modelusedin theanalysis
andto confirmtheadequacyof theanalyticalmodaldata.

4.1 Data Required

All environmental sources of disturbance must be considered in determining the type

of modal data required. Natural vibration modal data for the vehicle structure should

be determined as required for all phases of the vehicle operation. These data include at

least the following:

• Longitudinally and laterally supported launch-vehicle stages for prelaunch
handling, transportation, and captive firings.

• Lateral and longitudinal launch-stand/space-vehicle modes for ground-wind
loads and for launch ignition.

Longitudinal, lateral, and torsional unsupported space-vehicle modes for

configurations at the times of discrete events during the launch-and-exit

phase; e.g., liftoff, wind-shear and gust encounter, engine shutdown, stage
separation, and engine ignition.

Normal modes of the cantilevered spacecraft in its launch configuration for

use in synthesizing the requisite mathematical models of the complete space
vehicle.

• Normal modes for all phases of free flight, including orbital maneuvers,

appendage deployment, docking, entry, and touchdown, as applicable.

Modal-data accuracy requirements should be allowed to vary in accordance with the

particular problem to be solved. No single type of analytical model representation

should be used to describe all configurations of a space vehicle. Since (as explained in

Sec. 2) the accuracy of modal data obtainable varies widely with complexity of the

structure and the order of the mode being analyzed, the numbers recommended in the

next two paragraphs should be regarded as guides only and in no case should be taken

as requirements without a study to determine their suitability to the individual

problem.
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In general, modal frequencies for stability analyses of control systems should be

accurate to 10% on modes higher than the fundamental. The fundamental-mode

frequency should preferably be accurate to 5%. For flexible, high-fineness-ratio launch

vehicles, a minimum of the three lower-frequency bending modes, plus at least the

lowest-frequency slosh mode, is recommended for control-system stability analyses.

For relatively stiff, low-aspect-ratio vehicles, such as the Apollo Service and Command

Module stage, only the lowest-frequency slosh mode may be required. On the other

hand, a singularly flexible (local flexure) configuration, such as the docked

LEM/Apollo Service and Command Module, would probably require only the

fundamental lateral bending mode, the lowest-frequency slosh mode, and the

fundamental torsional mode for evaluation of the control system's stability. In all

cases, a sufficient number of the lower-frequency modes should be furnished to

provide a frequency range of response which encompasses the frequency characteristics

of the control system and of the exciting forces.

Modal data for analyses of the vehicle load should be accurate to 5% on the

fundamental frequency and 10% on other frequencies of interest. Lateral-load analyses

of launch vehicles generally require a minimum of six of the lowest-frequency lateral

bending modes. Similarly, a minimum of six of the lowest-frequency longitudinal

modes is recommended for longitudinal-load analyses. When longitudinal and lateral

modes are coupled, additional modes should be used in the analysis. For detailed

investigation of loads in a particular stage or in the payload, the low-frequency modes

in which the component of interest has a relatively large response should also be used.

For the analyses of responses resulting from localized load sources, such as an injection

rocket, the use of the lower-frequency modes with large-amplitude displacements at

the source and in the direction of the exciting force is recommended. In all cases, a

sufficient number of the lowest-frequency modes should be furnished to provide a

frequency range of response that encompasses the frequency range of the exciting

forces.

4.2 Analysis

4.2.1 Modeling of Structure

The mathematical model should represent the linear characteristics of the structure. It

should account for all stress-strain effects that influence the structural distortions,

including beam shear, torsion, and axial extension, as well as plate shear and twist,

unless their effect on the modal data has been proven negligible (refs. 38 and 40).
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The effects of initial internal forces which modify the load-displacement characteristics

should be included in the mathematical model. These initial internal forces may result

from dead loads, quasi-static accelerations during boost, built-in preloads, and other

static or quasi-static loads applied to the structure.

In evaluating the effective stiffness of the model, the effect of local structure, such as

joints between interstage adapters and vehicle stages, trusses on which payload or

engines are mounted, or play in joints such as engine gimbal blocks when the engine is

not under thrust, should be carefully scrutinized. Depending upon the characteristics

of the joint, the combination of axial and bending loads could lead to variations in

stiffness during different periods of operation, both in flight and on the ground. The

variation of joint stiffness under these conditions is difficult to determine by analysis

and should be ascertained by test.

The mathematical model should represent the actual distribution of mass throughout

the structure. The use of distributed-mass models, such as the consistent-mass-matrix

technique (ref. 31), is recommended. If a lumped-mass technique is used, it should be

demonstrated by a parameter-variation study that a sufficient number of discrete mass

points are used to represent adequately the modal characteristics (refs. 54 and 55). For

accurate modal-data determination of a lumped-mass unsupported one-dimensional

system, the number of discrete masses should be about 10 times the order of the

highest mode to be determined. For more complex structure, such as multidimensional

frames, the relationship between the number of discrete points and the accuracy of the

computed frequency is not established, and reliance must be placed on the experience

of the analyst.

Mechanical models of tanks containing fluids should simulate at least the first-mode

lateral sloshing effect. A mass-spring model based on the pendulum analogy is

recommended to simulate this phenomenon (ref. 33). Longitudinal mechanical

coupling of the fluid with the structure must also be provided for in the

longitudinal-mode analysis (ref. 25). Care must be exercised to assure that only the

effective portion of the fluid mass is represented in the model (i.e., a smooth

cylindrical tank rotating about its geometric axis of revolution does not cause rotation

of any contained fluid in a linear model).

Finite-element techniques are recommended for modeling complex structures

mathematically. In this approach, the elastic model should be defined in terms of

assumed displacement functions in component parts leading to direct construction of a

structural-stiffness matrix, or else in terms of assumed force distributions in

component parts leading to direct construction of a structural-flexibility matrix. The

relative proportion of adjacent individual components in the structural model must be

chosen with care to minimize extreme variations in stiffness or flexibility which result
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in lossof accuracyin thestructure-matrixcoefficients(ref. 50).Unlesstheequivalent
of IBM 360 double-precisionarithmeticis used,one shouldnot allow the ratio of
numericalvaluesbetweendiagonalelementsin theelasticmatrix to exceed1"1000.

4.2.2 Formulation of Equations of Motion

The approach used for formulating the equations of motion should take advantage of

simplicities inherent in configurations wliich have symmetry, uniform geometry, or

uniformly distributed properties. The use of continuous models is recommended for

configurations with uniform geometry and uniformly distributed properties (such as

entry cones, fairings, and engine nozzles). The formulation may follow any of several

classical methods (ref. 1): solution of integral equations with the associated influence

functions, solutions of differential equations with associated boundary conditions, or

an energy approach using assumed modes, such as the Rayleigh-Ritz method.

The use of matrix notation and matrix manipulation is recommended. The differential

equations of motion then take the matrix form of

[M] {qi} + [K] {qi} = {Qj} (1)

where [M] and [K] are square matrices of the mass and stiffness coefficients,

respectively, and {qi}and {Qj}are column matrices of the coordinate displacements and
applied dynamic forces, respectively (ref. 2). The data should be frequently updated to

reflect changes in structural parameters.

4.2.3 Solution for Modal Data

The modal data should be obtained from the solution of the following equation of

motion or its equivalent:

2
-co i [M] {qi} + [K] {qi} = {0} (2)

The basic modal data consist of the sets of natural frequencies, eoi, and the

corresponding mode shapes, {qi}, which satisfy equation (2). Generally, only the

lower-frequency modes and mode shapes are required.

The modal internal forces and stresses and the generalized mass are subsequently

obtained on the basis of the mode shapes, {qi}, and the mass and stiffness matrices,

[M] and [KI, of the structure.
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It is recommendedthat the modal data be solvedby analyticaltechniqueswhich
computeonly therequiredlow-frequencydata,suchasmatrix-iterationtechniquesor
the Householdermethod.For large-ordermultidegree-of-freedomsystems,theanalysis
shouldbeperformedwith IBM360 double-precisionarithmeticor its equivalent.The
modaldataprovidedfor eachmodefrom the analysisshouldconsistof frequency;
modeshape,includingdisplacementsandrotations;internal forces;internalstress;and
generalizedmass.Damping data should also be provided for each mode from
experienceandverifiedby experiment.Thesloshing-modedampingshouldbeobtained
as recommendedin reference33 and the plannedmonographon sloshsuppression
systems.

For complex structural systemsin which the separatecomponentsare physically
identifiable, the method of componentmodesis recommendedfor solutionof the
modaldata.This is particularlydesirablewhentheappropriatemodalpropertiesof the
separatecomponentsareknownor canbereadilydetermined.

4.3 Tests

4.3.1. Basic Recommendations

Static tests should be conducted to verify (where not adequately established) the

analytically derived major or significant load-displacement characteristics and

boundary conditions of the analytical model of the vehicle structure. Furthermore, if

modal data obtained by analysis cannot otherwise be demonstrated to be adequate, the

analytical data should be replaced or confirmed by the results of modal tests. The

design of the test program depends on the confidence placed in the analytical results.

Extensive testing is recommended where a radically new configuration without prior

experience is involved. On the other hand, simple changes of payload on a standard

launch vehicle may require only an analytical determination of the new natural

vibration modal data. In general, changes in mass can be adequately handled by

changes in the mathematical model without additional tests, whereas significant

changes in stiffness usually require test verification.

If the actual design incorporates seriously nonlinear features, such as looseness in joints

and backlash in gears, then its behavior cannot be adequately predicted by a linear

analysis. In fact, linear characteristics such as normal modes might not even exist at all,

in which case tests on such a structure could never reveal such nonexistent properties.

If such features exist in the design, either by intent for a good reason or by virtue of

uncontrollable factors, then the analyst, designer, and experimentalist, together, must

be careful in applying linear analytic approximations to nonlinear real-life test results.
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4.3.2 Static Testing

Tests of static-load displacements and boundary-condition influence coefficients

should be performed on full-scale engineering models that have primary-structure static

characteristics identical to those of the prototype and flight structure. If full-scale tests

are not feasible, data from replica models, such as the 1/5-scale Saturn replica model

(ref. 56), may be sufficient. The load conditions under which the displacement data are

measured should simulate the quasi-static conditions expected for the time of flight for

which the modal data will apply.

Load-displacement data should be obtained to determine, at a minimum, the elastic

characteristics for the primary load-carrying element in the structure,with loads applied

at the location of the primary masses or at major attachment points. For a simple

spacecraft structure, the load-displacement characteristics may be determined for only

a single major load point, as at the cantilevered end of the major structural element, at

the location of the major equipment platform cantilevered from a central cylinder, or

at the support points for an injection rocket attachment. For a launch vehicle or a large

spacecraft structure, load-displacement measurements should be determined also for

interstage structure between attach points, at major transverse bulkheads, for

engine-support trusses, and for payload-support points.

The load-displacement characteristics and boundary-condition data obtained should be

compared with the mathematical model. These data should correlate within about 20%

for distortion under a given load. If necessary, the mathematical model should be

changed to agree with the static-load-displacement test data. These load-displacement

tests (or influence-coefficient measurements) should not be confused with structural

qualification tests.

4.3.3 Dynamic Testing

To provide a basis for evaluating the quality of analytically derived modal data,

dynamic tests should preferably be performed on a full-scale engineering model,

prototype, or on flight-test structures which have dynamic characteristics identical to

those of the flight structure. Scaled replica models may also be used where full-scale

tests are not feasible or to supplement full-scale tests (ref. 56). Low-level

qualification-type sine-sweep tests are recommended on spacecraft for verifying

analytical modal frequencies and fundamental mode shapes, and for determining modal

damping.

If analytical data are not available, or if more precise experimental data on large

spacecraft and launch vehicles are desired than are available from sine-sweep tests, then
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modal-vibration survey tests should be performed to obtain the required modal data. A

meaningful modal.survey test can involve large expenditures of time and money, and

thus should be justified and carefully planned.

The equipment generally required for dynamic modal testing consists of a suspension

or support system, a shaker system, instrumentation, and data-acquisition equipment.

For determination of fixed-base modes, a large rigid support system for the vehicle

should be used. Particular attention should be given to the duplication of flight-vehicle

joint flexibility at the interface. For measurement of free-free modes, a suspension

system should be used which gives "rigid-body" suspension frequencies that are well

below the elastic frequencies of the vehicle. Acceptable suspension techniques include

flexible coil springs, air springs, bungee cord, and, for vehicles with unusually low

natural frequencies, nearly buckled columns (refs. 14 and 57 to 59).

The shaker system requirements should be determined by the type of suspension and

nature of the modal tests. It is recommended that the methods treated in reference 12

be used r/_guide for establishing the power and force requirements for modal testing.

The exc _ are frequently used without flexure connections between the armature

and hou_ ,, necessitating precise alignment of the housings. For this reason, shaker

supports should be carefully designed, possibly with vernier adjustments for vertical

and lateral positioning.

Instrumentation is required to measure the forces being applied to the structure and

the displacement or acceleration responses. The electrical current supplied to each

exciter is proportional to force, so the current measurement may be used to measure

the force, if convenient. As an alternative, simple load cells may be used. Small

accelerometers should be mounted at each shaker location and a "roving"

accelerometer should be used to obtain the mode shapes. The roving accelerometer

should be temporarily attached to the structure at the test point with double-backed

tape or a light plastic vacuum cup. Precalibrated fixed accelerometers should be used

for inaccessible locations and for internal measurements.

Data-acquisition equipment can range from complex "mode-lock" servomechanisms

and complete instrumentation displays to a single dual-beam oscilloscope and a

direct-writing oscillograph. If the latter system is used, a switching device should be

employed with the oscilloscope to permit successive comparisons of force and

acceleration measurements at each operating shaker. Display of shaker force on one

axis of a single-beam scope and the singly integrated acceleration signal on the other

axis gives a Lissajous pattern that is a fully collapsed ellipse when the shaker force is in
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phasewith local velocity.The direct-writingoscillograph permits comparisons of all

responses and measurements of the logarithmic decrement at each location for

evaluation of structural damping.

Modal tests should include (1)frequency surveys to establish approximate resonant

frequencies; (2)isolation of each mode by adjusting shaker locations and forces;

(3) damping characteristics of each mode; (4) mode-shape measurement of each mode;

and (5) evaluation of the orthogonality condition.

Frequency surveys should be performed with a single shaker at two or three locations.

The responses of the fixed accelerometers and the magnitude of the input force should

be recorded on an oscillograph for detailed evaluation of resonant frequencies.

For isolation of each mode, external forces should be applied so that shaker force is in

phase with local velocity as shown by the Lissajous pattern. The procedure should be

started by exciting the structure with a single shaker at the approximate resonant

frequency. The frequency is adjusted until shaker force and local velocity at the point

of excitation are in phase.

Responses at other locations on the vehicle are then compared on the oscilloscope with

the response of the reference accelerometer to establish phase angles. If a control

system like that described in reference 12 is not available, the second exciter should be

located at the point having the largest phase-angle error (from 0° or 180°). Amplitude

and sense of the second force are adjusted to optimum, again using the phase

relationship between response locations as a criterion. The roving accelerometer is of

considerable help in determining regions of large phase-angle error. This method

becomes increasingly complex with mode number because the higher modes are

generally more difficult to excite properly.

In addition to phase angle, the damping characteristics of a mode should be determined

to establish "purity." A well-defined mode will decay cleanly at the modal frequency

without beating or shifting to another frequency. Decay records of all the fixed

accelerometers should be recorded for evaluation of modal damping.

Once the mode has been established, the mode shape should be determined at each

significant mass point with the roving accelerometer. Responses should be measured

with respect to an arbitrarily selected station, generally the location of a fixed

accelerometer. A good "bookkeeping" system should be used for recording data to

avoid the necessity of repeating a complicated shaker setup.
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One additional step in the modal test is evaluation of the consistency of the

experimental data by examination of the modal data orthogonality. It is recommended

that the relative orthogonality of the modal data be determined as each successive

mode is obtained. The generalized mass matrix obtained from an integrated double

product of the experimental mode shape and the known mass of the system should

have off-diagonal elements no larger than about 10% of the major diagonal elements. If

this limit is exceeded, a procedure such as that given in reference 53 should be utilized

to make small adjustments in mode shape.

For large and complex systems, where tests of the complete system are not feasible

because of size, boundary conditions, or other factors, it is recommended that dynamic

tests of separate components be combined with suitable static tests to provide the

required data. Inflight maneuvers to excite the fundamental modes on instrumented

test vehicles are recommended where ground tests of the complete system are not

feasible.
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NASA SPACE VEHICLE DESIGN CRITERIA

MONOGRAPHS ISSUED TO DATE

SP-8001 (Structures)

SP-8002 (Structures)

SP-8003 (Structures)

SP-8004 (Structures)

SP-8005 (Environment)

SP-8006 (Structures)

Buffeting During Launch and Exit, May 1964

Flight-Loads Measurements During Launch and Exit,

December 1964

Flutter, Buzz, and Divergence, July 1964

Panel Flutter, May 1965

Solar Electromagnetic Radiation, June 1965

Local Steady Aerodynamic Loads During Launch and

Exit, May 1965

SP-8007 (Structures) Buckling of Thin-Walled Circular Cylinders,

September 1965

SP-8008 (Structures)

SP-8009 (Structures)

SP-8010 (Environment)

Prelaunch Ground Wind Loads, November 1965

Propellant Slosh Loads, August 1968

Models of Mars Atmosphere (1967), May 1968

SP-8011 (Environment) Models of Venus Atmosphere (1968), December 1968

SP-8014 (Structures) ,Entry Thermal Protection, August 1968

NASA-Langley, 1969 -- 32 31
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